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We have developed and applied an angular sudden approximation for modeling proton transfer in zeolites,
using Miller’s semiclassical transition state theory. We have parametrized the rate theory by performing B3LYP/
6-311G(d,p) density functional theory calculations for paths with fixed O-Al-O angle in a cluster model of
H-Y zeolite. We find that both the barrier height and barrier curvature increase with O-Al-O angle. We
also find that the classical barrier height increases with angle more rapidly than does the curvature, forcing
the tunneling probability to decrease strongly with angle. The range of important angles for proton transfer,
the so-called dynamical distribution, involves angles far from the saddle point angle at low temperatures (i.e.,
large curvature paths), and broadens significantly at higher temperatures, encompassing the saddle point region.
The final temperature dependence of the proton jump rate within the sudden approximation shows surprisingly
good agreement with that from conventional semiclassical transition state theory, which is based on the
minimum energy path. We attribute this in part to a coincidence that occurs in the temperature regime of
interest, namely 200-1000 K, a coincidence that we do not expect will occur in other systems.

I. Introduction

Zeolites are nanoporous, shape-selective catalysts widely
used in the chemical industry for applications ranging from
petroleum cracking to fine chemical synthesis.1,2 Many reactions
begin with proton transfer from zeolite Brønsted acid sites
tSisOHsAlt. Acidic zeolites thus provide a fascinating and
important platform for modeling condensed phase proton
transfer, without the difficulty of sampling solvent reorganization
as occurs in liquids. However, despite the relative simplicity of
proton transfer in zeolites, the fundamental reaction dynamics
of these systems are poorly known. Recent attempts at calculat-
ing zeolitic proton jump rates have focused almost3 exclusively
on paths that intersect the transition state, i.e., the first-order
saddle point separating reactants from products.3-6 Such ap-
proaches tacitly assume that the zeolite framework equilibrates
to the motion of an activated proton. However, the reverse seems
more likely, namely that the proton jump is rapid compared to
time scales of framework relaxation.7 In this article, which builds
directly on our previous work,4,5 we apply quantum chemistry
and semiclassical rate theory to the development of a sudden
approximation for proton transfer in model zeolite clusters.

To calculate rates of proton transfer in zeolites, one has to
develop approximate representations for the zeolite framework,
the electronic structure and the nuclear dynamics. In a previous
article, denoted paper I, we focused on small cluster models in
order to approach convergence of the electronic wave function.4

We found that using the B3LYP density functional8,9 with basis
sets of triple-ú quality in the valence space, and including
polarization functions on all atoms, is the most efficient method
for converging structures and vibrational frequencies. For

converging classical barrier heights to within∼1 kcal mol-1,
we found it necessary to augment MP2 barrier heights calculated
using large basis sets with MP4 energies obtained in more
limited basis sets.10,11 The need to apply such high levels of
theory precludes the calculation of reasonably complete potential
energy surfaces for these high-dimensional systems, as would
be required in many quantum rate theories.12,13 As such, we
rely on “direct” dynamical methods that require a realistically
limited set of potential energy parameters, because of the
significant ab initio expense associated with calculating those
parameters.

Over the years Miller and co-workers have made several
fundamental advances in direct dynamics, most notably the
reaction path Hamiltonian14 and semiclassical transition state
theory (SC-TST).15 In this article we focus on the latter, which
was inspired by the following key insight by Miller in 1977:
one-dimensional semiclassical tunneling theory can be extended
to multidimensional systems by conceiving of a generalized
barrier penetration integral,θ.15 By expanding the potential
energy surface in normal modes at the saddle point, Miller
showed thatθ is proportional to the locally conserved semiclas-
sical action associated with harmonic barrier crossing.15 In a
particularly elegant development, Miller and co-workers ex-
tended SC-TST to treat barrier anharmonicity and reaction path
curvature by expanding the potential at the transition state to
quartic order, and semiclassically quantizing the resulting
Hamiltonian within perturbation theory.16,17 This approach
remains one of the simplest ways to incorporate ab initio data
directly into a high-quality rate theory. Unfortunately, for many
complex problems of chemical and materials science interest,
the cubic and quartic force constants that are required16 to
parametrize this nonseparable SC-TST are impractical to obtain
from electronic structure calculations. And indeed, without these
anharmonicities SC-TST reduces to quantum harmonic TST,
which diverges at sufficiently low temperatures. To ameliorate
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this difficulty, we have shown in a previous article, denoted
paper II, that the harmonic version of Miller’s SC-TST can be
stabilized by reintroducing the ground state of reactants,5 which
is reminiscent of the truncated parabolic barrier considered by
Bell in 1934.18 In this article we revisit truncated-harmonic SC-
TST for use in a sudden approximation for proton transfer in
zeolites.

In paper II, we applied truncated-harmonic SC-TST to proton
transfer in H-Y zeolite with potential parameters calculated in
paper I. For this system, Sarv et al.19 used variable temperature
MAS NMR to measure proton jump rates at 298 K, 478, 568,
and 658 K, yielding an apparent activation energy of 61 kJ
mol-1. The best electronic structure calculations in paper I
predict a zero-point vibrational energy (ZPVE) corrected barrier
of 86.1 kJ mol-1 for proton transfer in an isolated cluster. By
forcing an Arrhenius fit through SC-TST jump rates calculated
at the four temperatures studied by Sarv et al., we obtained an
apparent activation energy of 53.0 kJ mol-1. In an effort to
include some approximate measure of long-range forces, which
are ignored by our cluster model, we incorporated embedded
cluster energies reported by Sauer et al.20 and arrived in paper
I at a final ZPVE corrected barrier of 97.1 kJ mol-1. In paper
II we recalculated SC-TST jump rates using this augmented
barrier, and subjected the results to the Arrhenius analysis at
the temperatures studied by Sarv et al., arriving at an apparent
activation energy of 60.3 kJ mol-1. This remarkable agreement
with the 61 kJ mol-1 reported by Sarv et al. is likely to involve
fortuitous cancellation of error in our truncated-harmonic SC-
TST, since barrier anharmonicity tends to decrease tunneling
probabilities, while corner-cutting tends to increase them.16

Nonetheless, this result strongly suggests that true proton-transfer
barriers are being underestimated by neglecting tunneling when
interpreting mobility data.

By focusing on barrier crossing dynamics near the saddle
point, SC-TST clearly gives the correct high temperature limit.
Indeed, even instanton theory produces the minimum energy
path (MEP) for sufficiently high temperatures.21,22 However,
for lower temperatures where tunneling dominates the jump rate,
corner-cutting paths far from the MEP (i.e., large curvature
paths) can become important,3 since tunneling probabilities are
generally more sensitive to barrier width than they are to barrier
height. In principle, nonseparable SC-TST can account for this
through coupling between the reaction coordinate and orthogonal
vibrations,16,17 although the cubic and quartic force constants
that supply this coupling may not provide the most convenient
representation of the underlying physics.

An alternative picture involves the proton makingsudden
jumps for various fixed zeolite framework configurations; this
is motivated by the fact that the proton is light compared to the
zeolite atoms. Such paths would deviate strongly from the MEP,
making them large curvature paths. For proton transfer in
zeolites, the most strongly coupled framework motion is the
local O-Al-O bending vibration, which changes along the
MEP by about 15° as it modulates the proton transfer donor-
acceptor distance.4,6 Such a situation has already been described
for proton transfer in solution; for example, see Figure 1 in ref
7 by Borgis and Hynes. An angular sudden approximation for
proton transfer in zeolites would involve performing rate
calculations for various fixed O-Al-O angles, and then
averaging over the fixed-angle jump rates with the proper
weighting. In principle, other local coordinates that couple with
the proton jump could be treated in the same way. Below we
pursue this sudden approximation in the language of truncated-
harmonic SC-TST, with slight modifications that account for

barrier crossing away from critical points on the potential
surface. By explicitly treating corner-cutting (i.e., fixed-angle)
paths with a truncated-harmonic formulation, we are relaxing
one of the two partially canceling approximations made in paper
II. We are thus breaking a golden rule of theoretical science:
make approximations two at a time! Despite this departure from
canceling approximations, we find below that the overall
temperature dependence of the proton jump rate within the
sudden approximation agrees surprisingly well with that from
the minimum energy path calculations reported in paper II.

The remainder of this paper is organized as follows: in
section II we describe the computational methods used for both
electronic structure and dynamics calculations, in section III
we discuss the results, and in section IV we give concluding
remarks.

II. Computational Methods

In this section we begin by reviewing the molecular cluster
used to study proton transfer between the O(1) and O(4) bridging
oxygens in H-Y zeolite. This is followed by a description of
the electronic structure methods used to parametrize the proton-
transfer potential surface. We then outline the sudden ap-
proximation for proton transfer using truncated-harmonic SC-
TST.

A. Zeolite Cluster Model. We model proton transfer in a
zeolite cluster with H3SiOAl(OH)2OSiH3

- connectivity. The
underlined oxygens are the donor and acceptor, labeled O(1)
and O(4), respectively. As detailed in paper I, the cluster is
initially constructed by truncating a small piece of H-Y zeolite
with terminal hydrogens. These are placed in the directions of
the next framework atoms in the actual zeolite, at distances of
1.4 and 0.9 Å for the fabricated SiH and OH bonds, respectively.
The terminal hydrogens are kept frozen in space to mimic the
mechanical restraints of the zeolite framework. All remaining
atoms are allowed complete geometric freedom during optimi-
zation except for the O-Al-O angle, which is frozen at various
values in accord with the sudden approximation. A typical
cluster is shown above in Figure 1.

B. Electronic Structure Methods. In paper I we reported a
convergence study of electronic structure methods23 showing
that accurate results can be obtained efficiently for this system
by first optimizing the cluster geometry with B3LYP/6-311G-
(d,p). Sufficiently converged electronic energies were then
obtained by evaluating the MP2/6-311G(d,p) energy and adding
the difference{E[MP4/6-31G(d)]- E[MP2/6-31G(d)]}.24 As
shown in paper I, such an approach yields a classical barrier
height within 0.43 kcal mol-1 of that calculated with the
coupled-cluster method CCSD(T)/6-31G(d). We also found that
B3LYP/6-311G(d,p) alone gives good results for geometries and
frequencies but underestimates barriers by about 2.0-2.5 kcal
mol for this system, which is about 10% of the classical barrier
height.

Figure 1. Cluster model of proton transfer in H-Y zeolite, showing
a fixed-angle transition state very near the first-order saddle point for
this system.
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For computational efficiency in the present study, we will
perform only B3LYP/6-311G(d,p) calculations; these will
provide qualitatively reliable, but not quantitatively accurate,
trends regarding the angular dependence of proton jump
potential parameters. Below we use analytic gradients to locate
fixed-angle reactant minima and transition states. Analytic
energy second derivatives in mass-weighted coordinates are used
to evaluate harmonic vibrational frequencies. During normal-
mode analysis, we set the mass of frozen hydrogens to a very
large number, e.g., 106 au. This removes spurious imaginary
frequencies associated with restraining the cluster and gives
vibrational frequencies in good agreement with those observed
from infrared measurements of bulk Na-Y zeolite.25

All calculations were performed using GAUSSIAN9824 on
Intel Linux workstations. Representative calculation times for
a 500 MHz Pentium III processor are B3LYP/6-311G(d,p)
optimization, 15 CPU hours, and B3LYP/6-311G(d,p) frequen-
cies, 9 CPU hours. The calculations employed direct integral
methods, requiring no more than 100 megabytes of disk space.

C. Rate Theory. Our angular sudden approximation for
proton transfer in zeolites entails performing rate calculations
for various fixed O-Al-O angles (φ), and then averaging over
the fixed-angle jump rates with the proper weighting. The ansatz
of our angular sudden approximation is thus given by

whereF(φ) andk(φ) are the properly normalized,φ-dependent
probability and rate constant, respectively. To remain consistent
with SC-TST, all zero-point vibrational energies (ZPVE) and
summations over state space are contained withink(φ). The only
average not handled withink(φ) is of course the average over
φ itself; to accomplish this final averageF(φ) takes the form:

whereVr(φj) is the ground electronic energy of reactants with
the O-Al-O angle set toφj.

We approximatek(φ) with truncated-harmonic SC-TST,
inspired mainly by the work of Hernandez and Miller in 1993.17

We give a detailed review of Hernandez and Miller’s formula-
tion in paper II, as well as the derivation of the truncated-
harmonic version of SC-TST; here we briefly review the main
results. The truncated-harmonic SC-TST rate constant takes the
form

wherekTST(T) is the harmonic TST rate constant andΓ(T) is
the tunneling correction factor. In eq 2.3,kB is Boltzmann’s
constant,T is temperature,h ) 2πp is Planck’s constant, and
Qr, Qq, andΓ(T) are given by

In eqs 2.4-2.6, many physical quantities arise that require
explanation. Before doing so below, we remind the reader that
each of these quantities depends on the O-Al-O angle,φj.
For notational brevity we omit the explicit angular dependence.

The quantities that comprise the reactant volume and dividing
surface partition functions,Qr and Qq, respectively, are com-
pletely analogous except thatQr samples all reactant vibrations
while Qq only samples theF - 1 stable vibrations at the
transition state, hence the sum overF - 1 modes in eq 2.5. In
eq 2.4, â ) (1/kBT), nr ) (n1

r , n2
r , ..., nF

r ) are theF ) 48
vibrational quantum numbers of the reactant, and (ω1

r , ω2
r , ...,

ωF
r ) are the corresponding vibrational frequencies. The quanti-

ties in eq 2.5 are defined at the transition state by analogy to
eq 2.4. At the transition state the vibrational frequency of the
reaction coordinate,ωF

q, is imaginary; its corresponding quan-
tum number was related by Miller to the generalized barrier
penetration integral,θ, according to15

As with one-dimensional WKB theory,26 θ in eq 2.7 is a real
number that vanishes at the transition state and decreases with
increasing energy.

In eq 2.4,∆Vr is the ground electronic energy of the reactant
(Vr) corrected by an energy shift that arises because the angular
constraint pushes the reactant away from its global minimum
energy. As such, the gradient of the potential is not zero at the
fixed-angle reactant minimum, requiring a coordinate shift by
“completing the square” to quantize the vibrations.∆Vq is
defined analogously at the transition state.∆Vr and ∆Vq are
given by

where Gi
r is the mass-weighted gradient of the potential

expressed in reactant normal modes for modei, and likewise
for Gi

q at the transition state.
An obvious difficulty of the present approach is the attempt

to blend a normal mode picture of reactivity with a sudden
approximation that fixes a nonlinear local mode. In particular,
it remains difficult to project out the O-Al-O angle from the
normal mode representations inherent in eqs 2.4, 2.5, 2.8, and
2.9. In effect we are double counting the angular motion, since
the normal modes account for O-Al-O bending. To test the
magnitude of error associated with this double counting, we
compare below rate calculations using correct oxygen and
aluminum masses in the central O-Al-O moiety, to those using
very large masses, e.g., 106 au. If the results give reasonable
agreement, we surmise that this double counting is not too
serious an approximation. Nonetheless, we seek improved
formulations of SC-TST that allow a more natural blending of
normal mode analysis and local mode constraints.

The tunneling correction factor in eq 2.6 is the truncated-
harmonic version of what Hernandez and Miller originally

k = ∫dφ F(φ) k(φ) = ∑
j)1

Nφ

∆φjF(φj) k(φj) (2.1)

F(φj) ) e-âVr(φj)/∑
j′)1

Nφ

∆φj′e
-âVr(φj′) (2.2)
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h
‚Q

q

Qr
‚Γ(T) (2.3)

Qr ) ∑
nr

exp{-â[∆Vr + ∑
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F

pωi
r(ni

r +
1

2)]} (2.4)

Qq ) ∑
nq
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q(ni
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published in ref 17. The parameterθ0 is the maximum allowed
generalized barrier penetration integral, which is associated with
the ground state of reactants. As discussed in paper II,θ0 is
given by π∆E0/p|ωF

q|, where ∆E0 is the ZPVE corrected
barrier height given by

We note that the expression for∆E0 given in eq 2.10 is
generalized for normal-mode analyses away from true critical
points, involving∆Vr and∆Vq instead of justVr andVq.

In the rigorously harmonic limit∆E0 goes to infinity,
the first term in eq 2.6 vanishes whenkBT > p|ωF

q|/2π, the
upper limit of the integral extends to infinity, and the well-
known harmonic limit is obtained:Γ f R/sin(R) whereR )
âp|ωF

q|/2. As discussed in the Introduction, this harmonic
expression becomes useless for temperatures at or below
T ) p|ωF

q|/2πkB. In paper I, we obtained an MP2/6-31G(d)
barrier curvature of|VjF

q| ) |ωF
q|/2πc ) 1570 cm-1 (c is the

speed of light), which gives a harmonic divergence temperature
of 360 K. However, by reintroducing the ground state of
reactants, i.e., keeping∆E0 and henceθ0 finite, we arrive at
the truncated-harmonic theory given in eq 2.6. In addition to
giving the correct high-temperature limit, i.e.,Γ f 1 asT f
∞, the truncated-harmonic tunneling factor gives the following
low-temperature limit:

It is noteworthy that at low temperatures, our formula forΓ(T)
becomes proportional to eâ∆E0, hence eliminating the classical
Arrhenius temperature dependence fromkTST(T), as is well-
known from both experiment and theory. Thus, our tunneling
correction factor clearly exhibits the correct low and high
temperature limits and hence provides a qualitatively reliable
method for calculating quantum rate coefficients for nearly
separable systems.

D. Summary of Computational Methods.Here we briefly
summarize the computational methods applied in this article to
study proton transfer in zeolites. We first choose a set of relevant
O-Al-O angles for use in eq 2.1. These angles fall between
76° and 94°, because the reactant minimum occurs atφ ) 93.8°,
while the saddle point value is 78.4°.4 For each value ofφj, we
perform the electronic structure calculations described above
to obtain Vr, {Gi

r}, and {ωi
r} at the fixed-angle reactant

minimum, as well asVq, {Gi
q}, and {ωi

q} at the fixed-
angle transition state. Armed with these parameters, we evaluate
k(φj) within SC-TST according to eqs 2.3-2.10. Finally, after
repeating this process for allNφ angles, we properly normalize
F(φj) with eq 2.2 allowing the final rate calculation in eq 2.1.

III. Results and Discussion

In this section we describe the results of the computational
strategy outlined above for modeling proton transfer in H-Y
zeolite within the angular sudden approximation. We first
discuss the angular dependence ofVr, ∆Vr, Vq, and∆Vq resulting
from the electronic structure calculations. We then describe the
angular dependence ofk(φj) andF(φj) for several temperatures.
Finally, we report the temperature dependence of the full proton-
transfer jump rate for comparison with both experimental data
and our previous results reported in paper II.

Figure 1 shows the detailed structure of our cluster model at
the proton jump transition state forφj ) 78.6°, which is very
near the first-order saddle point for this system at 78.4°. The
Si-O bond lengths in Figure 1 are larger than typical values in
silicate materials (ca. 1.6 Å) because the cluster is protonated.
Figure 2 shows a schematic depiction of fixed-angle proton
transfer double wells, labeled by our density functional theory
results forVr, Vq, and |VjF

q|. In general, we find that both the
classical barrier height and the barrier curvature increase as the
angle increases from the saddle point value to the reactant
minimum value (93.64°).

As discussed in section IIC, the SC-TST rate constants
computed herein use shifted energies,∆Vr and∆Vq, rather than
bare energiesVr andVq. We also noted in section IIA that the
zeolite is terminated with artifically massive hydrogen atoms.
Unfortunately, because the difference betweenVr and∆Vr (and
likewise for Vq and ∆Vq) involves the ratio between mass-
weighted gradients and vibrational frequencies (cf. eqs 2.8 and
2.9), this difference is extremely sensitive to terminal atom mass
effects. We find from our present calculations that the majority
of the shift comes from normal modes associated with the
(massive) terminal hydrogens, and that the shift can be as large
as the classical barrier itself. When these modes are omitted
from the sums in eqs 2.8 and 2.9, the shifts decrease by several
orders of magnitude to negligible energies. This sensitivity to
termination effects is one of the many unsatisfactory aspects of
cluster modeling in computational materials science. The
approach we adopt in the present study is to omit the terminal
mode contributions to eqs 2.8 and 2.9, which is tantamount to
ignoring the shifts entirely. To address this and other issues
raised by cluster modeling, such as the role of long-range forces,
we will report in a forthcoming publication the results of
extended zeolite calculations,27 using the embedded cluster
method developed by Sauer and co-workers.28

Parts a and b of Figure 3 show the angular dependence of
F(φ), k(φ), andF(φ)‚k(φ) at T ) 200 and 588 K, respectively.
The units ofk(φ) are s-1 while those forF(φ) are radians-1. As
such, we scaleF(φ) by the factors shown in Figure 3a,b to more
clearly reflect the angular dependence ofF(φ) and F(φ)‚k(φ).
As expected,F(φ) increases rapidly withφ as the angle
approaches 93.8°, the value for the minimum energy reactant
configuration. Alternatively,k(φ) decreases strongly withφ in
Figure 3a,b; in both casesk(φ) decreases because the barrier
height grows strongly withφ, as shown in Figure 2. For
temperatures in the classical regime, such asT ) 588 K in

∆E0 ) (∆Vq + ∑
i)1

F-1pωi
q

2 ) - (∆Vr + ∑
i)1

F pωi
r

2 ) (2.10)

Γ(T)98
Tf0

Γ̃(T) ) eâ∆E0‚e-2π∆E0/p|ωF
q|(1 + 2π

âp|ωF
q|) (2.11)

Figure 2. Schematic of fixed-angle proton jump paths showing results
from electronic structure calculations forVr, Vq and |VjF

q|. Both the
classical barrier height and the barrier curvature increase with the
O-Al-O angle.
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Figure 3b,k(φ) decreases because increasing the barrier height
slows the rate of activated barrier crossing. For temperatures in
the quantum regime, such asT ) 200 K in Figure 3a, the angular
dependence ofk(φ) can be understood as follows. The ground
state tunneling probability is approximately given by e-2θ0,
where θ0 ) π∆E0/p|ωF

q| in our truncated-harmonic model.
Figure 2 shows that both (Vq - Vr) and |VjF

q| grow with φ; the
former trend decreases tunneling probabilities, while the latter
increases them. Figure 2 also shows that (Vq - Vr) grows more
rapidly than does|VjF

q|. As such,θ0 grows withφ because the
increasing barrier height dominates, causing tunneling prob-
abilities to decrease strongly withφ, as shown in Figure 3a.

The “dynamical distribution”F(φ)‚k(φ) peaks at 88.64° for
T ) 200 K, with a full width at half-maximum (fwhm) of 3.6°.
This angular range includes neither the reactant angle (93.8°)
nor the transition state angle (78.4°) but is closer to the reactant.
This dynamical distribution signals the importance of paths far
from the MEP, i.e., large curvature paths. Increasing the
temperature to 588 K produces a dynamical distribution that
peaks at 83.64° with a fwhm of 10.0°, now easily encompassing
both the reactant and transition state angles. At low temperatures,
we generally expect the dynamical distribution to focus on
angles close to the value at the reactant minimum energy
geometry. At high temperatures, we expect the distribution to
broaden toward transition state geometries, validating the use
of methods based on the minimum energy path (MEP).

Figure 4a shows the temperature dependence ofF(φ)‚k(φ)
for all eight angles considered, over the temperature range 170-
5000 K. The smaller angles show an extended Arrhenius
temperature dependence because contracting the angle requires
classical activation in our present model. The larger angles, on
the other hand, exhibit clear non-Arrhenius temperature depen-

dence because adopting these geometries requires minimal
activation, so tunneling from these angles can occur at low
temperatures. We note that the only angle that gives essentially
no temperature dependence at low temperature is 93.64° (open
circles in Figure 4a), which corresponds to the lowest energy
ground state considered. The low-temperature rate constant for
this angle plateaus at ca. 10-5 s-1, which is the low-temperature
limit when averaging over angles in the present theory, because
all other angles carry a classical Boltzmann weight. We also
note that in the temperature range 170-330 K, the most
important O-Al-O angle for proton transfer is 88.64° (open
squares in Figure 4a, which is consistent with the dynamical
distribution shown in Figure 3a. For temperatures below 330
K, F(88.64°)‚k(88.64°) remains in the range 10-2.5 to 10-1.3 s-1.

As discussed in section IIC, our attempt to blend a normal
mode picture of reactivity with a local mode sudden approxima-
tion introduces some double counting into the entropy portion
of the rate calculation, which typically impacts the preexpo-
nential factor. By comparing our rate calculations with those
where the central O-Al-O atoms are given extremely high
masses, which essentially eliminates the double counting, we
can determine its effect. In Figure 4b we show this comparison
by plotting the temperature dependence of the completely
averaged rate constants. Figure 4b shows essentially no differ-
ence between the sudden approximation with normal O-Al-O
masses and that with artificially massive O-Al-O atoms; only
a slight difference in the preexponential factor (as expected)
can be seen at high temperatures.

We also compare in Figure 4b our present sudden approxima-
tion results with the MEP-based calculations reported in paper
II. There is remarkably little difference between the sudden and

Figure 3. Angular dependence ofF(φ), k(φ) andF(φ)‚k(φ) at (a)T )
200 K and (b)T ) 588 K. Curves involvingF(φ) are scaled by the
factors shown to display clearly the angular dependence. The peak angle
and width of the dynamical distributionF(φ)‚k(φ) decreases and
increases with temperature, respectively.

Figure 4. (a) Arrhenius plot ofF(φ)‚k(φ) for the 8 angles studied,
showing that 88.64° is the most important angle for proton transfer
over a wide temperature range, and that 10-5 s-1 is the low temperature
limit of the sudden rate. (b) The completely averaged rate constants,
showing surprisingly good agreement between the conventional SC-
TST and sudden approaches in this temperature range.
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conventional SC-TST results, except at very low temperatures
where a weak temperature dependence in the sudden rate
remains. The sudden rate temperature dependence in the range
170-330 K arises because of the activated contraction ofφ from
93.64° to 88.64°; this temperature dependence is virtually
identical to that exhibited byF(88.64°)‚k(88.64°) in Figure 4a.
The fact that the sudden and conventional SC-TST rates are
within an order of magnitude of each other in Figure 4b must
be regarded as coincidence. Indeed, as discussed above, the low-
temperature limit of the sudden rate is ca. 10-5 s-1, which is
several orders of magnitude lower than the conventional SC-
TST rate plateau value. Nonetheless, the temperature range
200-1000 K is the most relevant for zeolite science. In this
range the sudden and conventional SC-TST rates agree ex-
tremely well, and conventional SC-TST requires much less
electronic structure input. It remains to be seen whether this
agreement between the sudden and conventional SC-TST
methods arises for other systems as well.

We close section III by comparing our results with experi-
ment. As discussed in the Introduction, Sarv et al.19 used variable
temperature MAS NMR to measure proton jump rates at 298,
478, 568, and 658 K, yielding an apparent activation energy of
61 kJ mol-1. Because Sarv et al. did not measure proton jump
rates over a sufficiently wide range or fine mesh of temperatures,
they were unable to observe non-Arrhenius temperature depen-
dence. Nonetheless, our results suggest that the temperature
range 298-658 K overlaps significantly with the tunneling
regime. Assuming an Arrhenius temperature dependence for
measured proton transfer rates in the tunneling regime will
underestimate the true ZPVE corrected barrier. We thus believe
that the actual ZPVE corrected barrier may be significantly
larger than the measured value of 61 kJ mol-1. Indeed, our best
electronic structure calculations yield 86.1 kJ mol-1 for an
isolated cluster and 97.1 kJ mol-1 when approximately account-
ing for long-range interactions.20 On the other hand,forcing an
Arrhenius fit through our calculated conventional SC-TST rates
at 298 K, 478, 568, and 658 K gives an apparent activation
energy of 53.0 kJ mol-1, which is in reasonable “agreement”
with the experimental value of 61 kJ mol-1. When we
recalculate these proton jump rates using the present sudden
approach, and subject these four rates to an Arrhenius fit, we
obtain an apparent activation energy of 55.8 kJ mol-1, in even
closer “agreement” with experiment. The theoretical activation
energy increases when using the sudden approximation because
of the residual temperature dependence at low temperatures
associated with contracting the O-Al-O angle. Approximating
the effect of long-range forces should bring our result into even
better “agreement” with experiment.27

IV. Concluding Remarks

We have developed and applied an angular sudden ap-
proximation for modeling proton transfer in zeolites, using
Miller’s semiclassical transition state theory (SC-TST) approach.
We have parametrized the SC-TST calculations by performing
B3LYP/6-311G(d,p) density functional theory calculations for
paths with fixed O-Al-O angle in a cluster model of H-Y
zeolite. We find that both the barrier height and barrier curvature
increase with increasing angle,φ, from 78.6° (near the first-
order saddle point) to 93.6° (near the reactant minimum energy
geometry). We find that the classical barrier height increases
with angle more rapidly than does the curvature, so that in our
truncated-harmonic theory the ground state tunneling probability
decreases strongly withφ. As a result of these trends, the range

of important angles for proton transfer, the so-called dynamical
distribution, involves angles far from the saddle point angle at
low temperatures (i.e., large curvature paths). The dynamical
distribution broadens significantly at higher temperatures,
encompassing the saddle point region.

The final temperature dependence of the proton jump rate
within the sudden approximation shows surprisingly good
agreement with that from conventional SC-TST, which is based
on the minimum energy path as reported in paper II (ref 5).
We attribute this in part to a coincidence that occurs in the
temperature regime of interest, namely 200-1000 K, a coin-
cidence that we do not expect will occur in other systems.

These calculations demonstrate the need for zeolite models
beyond the cluster approximation,27 as well as more natural ways
to blend sudden and normal mode pictures of reactivity.
Nonetheless, the calculations reported herein would not have
been possible without the many seminal contributions to direct
dynamics theory made over the years by Miller and co-workers.
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